
JOUR"AL OF APPROXIMATION THEORY 64,356-358 (1991)

Notes

Banach Spaces Not Antiproximinal in Their Second Dual

MU-SAN WA~G AI'\D JIAN-HuA WA~G

Department oj Mathematics, Anhui Normal University,
Wuhu, Anhui, China

Communicated by Frank Deutsch

Received February 13, 1989; revised July 31, 1990

We prove that (f', 1·1) is not antiproximinal in (f', 1'1)**, where 1·1 is the norm
constructed in [I]. This fact shows that Davidson's equivalent norm fails to deliver
on his promise. ,C 1991 Academic Pre», Inc

A subspace M is called antiproximinal in a Banach space X if the only
vectors with closest approximants from M are the elements of M. A
Banach space X is said to have the projection approximation property
(PAP) if there is an increasing sequence (Pn ) of commuting, finite rank
idempotents in M(X) tending strongly to the identity operator. The con
sideration of whether X is antiproximinal in X** was studied by Davidson
[1], where it was claimed that if X has the PAP, then X has an equivalent
norm 1·1 such that (X, 1·1) is antiproximinal in (X, 1'1)**. However, in this
paper we prove that (II, 1·1) is not antiproximinal in (II, 1·1)**, where 1·1
is the norm constructed in [1]. This fact shows that Davidson's equivalent
norm fails to deliver on his promise.

Let (X, I . II) be a Banach space with the PAP, (P,,) be an increasing
sequence of commuting, finite rank idempotents in .1d(X) tending strongly
to the identity operator, andlPnl1 = I, 11/ - Pnll :( 1 for all n. Now let

Given e > 0, define a compact operator T from X into Y by

In [1], Davidson constructed a new norm on X by

Ixl = Ilxll + !ITxl,
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To prove that (X, 1·1) is antiproximinal in (X, !.)**, the author used the
assumption that T** is injective. In fact, T** need not be injective. We can
prove that if the dual space X* of X is non-separable, and T is any com
pact operator from X into Y, then T** is not injective. To see this, we note
that T is a compact operator, hence so is T*. If T** \vere injective, we
could apply Theorem IV.8.4(c) [3, p.232] to conclude that .~(T*)=X*'

Therefore X* is separable, a contradiction.
It is well-known that if X has a Schauder basis, then X has the PAP, and

the basic projections Pn (n = 1, 2, ... ) are increasing, commuting, idempo
tent, finite-rank operators. If X is IP, 1 :S.p< x, it is clear that 'IP"l =!
and 'I - P"li = I, for all n.

EXA\lPLE. Let X= I', Y = X ® I' = {(x n ): X"E X, L j'x,,;! < x}. P"x=
LZ, , ¢kek' x = (¢d E X, n = 1,2, ..., and let (ed be the usual unit vector
basis of 11. Assume that the operator T and the norm i·! are as above. We
claim that (X, 1'1) is not antiproximinal in (X, ·1 )**. To see this let y* be
an arbitrary element in Y*. For each ell E X, we have

I<e n , T*Y*)j = I<Te n , Y*)I

= 1«0, ... , 0, 2""f:e". 2 "-lee", ... J, y*)1

:S. 2 ". Ie I'y*'! ---> 0, n---> x,

so T*y* E Co, consequently 1'* y* c Co. It is known [2J that
(I' )** = (I' EEl (co)O), where (co)O refers to the annihilator of Co in I ~ when
Co is considered as a subspace of I". Take x** E X**, x** = (0, u),

U E (cot, u -# 0. Then

<y*, T**x**) = <T*y*, x**) =0

It follows that T**x** =0. Moreover,

for all y* E Y*.

d(x**,X):= inf llx-x**:I= inf HX,-u)!l,
xc x '(f-' x

= inf (I xii + I,ul;) = I'uil = Ix**I,·
xc x

By Lemma 2.5 [1, p. 206], we obtain

Ix**1 = :lx**I! + I!T**x**I, = Ilx**II·
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Thus d(x**, X)= Ilx**11 = Ix**I. Also,

d'(x**, X):= inf Ix-x**I:;:;; Ix**I,
XEX

hence

d'(x**, X) = Ix**I.

This shows that x** has a closest approximant in X with respect to the
norm 1·1, and x**¢x. Thus (X, 1·1) is not antiproximinal in (X, 1·1)**.
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